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Abstract 

Lead samples of several pur i t ies  have been damaged at l iquld 

!!bo di f fe ren t  damaging processes have been nitrogen temperature, 

employed: 

a Co60 source. 

compressive s t r a i n  and i r rad ia t ion  by gam& rays from 

Two studies  of the e f f ec t  of compressive s t r a i n  

have been performed: 

isochronal anneals from --17OoC t o  +4OoC and a study of the  change 

in s t r a i n  rate while under a constant stress durfng anneals from 

a study of the stored energy release during 
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-180OC t o  +30°C. One study of the e f fec t  of radiation damage has 

been performed: 

ul t rasonic  pulses during anneals from -196OC t o  +20DC. 

a study of the change i n  attenuation of 10 Mc/sec 

For the compressive s t r a i n  studies,  the purity of the samples 

has been varied Over the range 99.9999% t o  99% by the addition of 

thallium. 

energy stored t o  energy expended f o r  the same amount of eaergy 

It was  found tha t  purety has no ef fec t  on the r a t i o  of 

expended p e r  gram atonic weight of lead. 

level cause increases i n  the amount of energy released during re- 

covery. 

interpreted using the Granato-Mcke theory of attenuation by dis- 

locations and a model of defect migration t o  dislocations. 

l a t i ng  the  effect of impurities on recovery i n  t h e  compressive s t r a i n  

s tudies  with the r e su l t s  from the radiation damage study and the 

l i t e r a t u r e  on copper, a t en ta t ive  ident i f icat ion is made of the type 

of point defects migrating and the temperature range i n  which they 

migrate. 

defects are released front impurity t raps  with activation mer- 

Increases i n  the inpurity 

The r e su l t s  from the ul t rasonic  attenuation technique are 

Corre- 

I n  the temperature range -140OC t o  -110OC i n t e r s t i t i a l  

(0,155 * 0,010) eV and are then f r ee  t o  migrate. 

region -9OOC t o  -4OOC f r e e  vacancies migrate with activation energy 

(0.31 * 0.04) eV. Based on a vacancy mechanisnr f o r  self-diffusion, 

the energy of formation of a vacancy is found t o  be 0.74 * 0.05 eV. 

In  the temperature 



3 

Z. INTRODUCTION 

The low temperature physics group at Rensselaer Polytechnic 

I n s t i t u t e  has been engaged fo r  the last several years i n  the study of 

the  phenomenon of superconductivity i n  lead, including the  e f f ec t s  of 

p l a s t i c  deformationi. 

i n  deformed lead. 

are those of Schenckl and Boesoao2, which are resistance recovery studies,  

and Khotkevich3, which is of stored energy release. 

study i n  depth of the annealing of damaged lead would be of value i n  

c la r i fy ing  not only the properties of defects in lead but a lso  the resu l t s  

L i t t l e  is known about the properties of defects 

The only low temperature s tudies  known t o  the  authors 

It was f e l t  t ha t  a 

of the  superconductivity experiments, 

We report here on t he  resu l t s  of studying three properties during 

the annealing of imaged lead crystals:  

p l a s t i c  deformation (stored energy of cold work), strain under constant 

stress following an i n i t i a l  s t r a i n  (creep), and ultrascmic attenuation 

changes after gamma i r rad ia t ion  (radsation damage). 

t h i s  paper is f a i r l y  standard with the possible exception tha t  discussion 

re la t ing  spec i f ica l ly  t o  the r e su l t s  of a single  technfque has been 

included 88 8 sub-section of the corresponding section in  par t  111, 

Analysis and Results. 

results of the  several techniques must be considered together. 

the release of energy stored by 

The organization of 

Part  I V  is reserved garthe discussion i n  which 

11. EXPERIMENTAL TECHNIQUES 

Stored Energy Experiment 

Specimen Preparation 

Three d i f fe ren t  pu r i t i e s  of lead were investigated: 99.9999%, 99.9% 

and 99%. The 99.9% and 99% pure lead samples were prepared by doping 
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99.999% pure lead with thallium of s i m i l a r  purity. 

supplied by the  United Mineral and Chemical Corporation. 

were cast i n  vacuum of loa6 t o r r  in the form of 318 inch diameter rods 

approximately 5 inches i n  length and were i n i t i a l l y  s ingle  crystal .  

After casting, the rods were cu t  into 314 inch lengths and a 1/16 inch 

diameter hole was d r i l l e d  through the center of each specimen perpen- 

dicular t o  the 3/4 inch length. 

holes were dr i l led i n  each of t he  specimens fo r  future  thermocouple 

and hanging w i r e  insertion. 

and t h e l r  dimensions recorded. 

Evanohm w i r e  wound heater8 of approximately 300 ohms were emplaced using 

epoxy cement. 

A l l  materials were 

The samples 

Two 3/16 Inch deep, 1/16 inch diameter 

The specimens were then etched, weighed, 

In to  the hole through the specimen 

Cold Working of the Specimens 

Figure 1 i l l u s t r a t e s  the apparatus used. A l l  electric wiring has 

been omitted from the figure.  A pumping l i n e  (not shown) led from the 

specimen chamber by means of which the specimen chamber was kept below 

8 x The specimen chamber w a s  vacuum 

sealed by means of the lead gasket which was pressed between the bottom 

p l a t e  and the flange, both of which had sharp edges for be t t e r  vacuum 

sealing, as i l l u s t r a t e d  by Scott4. 

each gaske t  could be used 8 n u d e r  of times. 

t o r r s  during the experiment. 

This arrangement worked w e l l  and 

Before deformation the test specimen was located at the  bottom of 

the  specimen chamber d i rec t ly  below the s t ra in ing  tube. 

then evacuated. 

under tension during the compression of the  test specimen. 

and not the solder Joints  of the cryostatwas thus stressed. 

The system was 

A frame was placed around the specimen chantbex and was 

The frame 

The 
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specimen chamber w a s  cooled t o  l iquid nitrogen temperature and the 

lower pa r t  of the  s t ra in ing  tube w a s  filled with lfquid nitrogen. 

threaded handle i n  the frame was then used t o  bear against the C a l i -  

brated spring which rested on the  s t ra in ing  tube which i n  turn trans- 

mitted the stress t o  the  test specinen a t  the  bottom of the specimen 

chamber. The tube s l i d  through the O-ring seal. The load-compression 

curves were obtained by neans of the three dig1 gauges. 

expended i n  compressing the test specimen was  obtained by integration 

of the load-compression curve. After the test specimen was strained, 

the s t r a i n h g  tube w a s  raised. By means of t h e  hanging wire connecting 

it t o  the test: specimen, the test specimen w a s  raised from the bottom 

of the specimen chamber t o  a symmetrical posit ion with respect t o  the  

standard specimen. 

during the course of the subsequent anneals. 

of the change in thermal contacts caused by mavii~g the specimens. 

The 

The e n e r e  

The specimens were left undisturbed i n  this position 

This eliminated the problem 

The Technique of the Stored Energy Experiment 

The method used i n  this  experiment w a s  that of isochronal annealing 

i n  which the temperature was raised a t  a predetermined rate with n u l l  

temperature difference maintained between the  standard and test specimens. 

A similar technique has been used by ClarebroughS, et  al. 

ing, three consecutive anneals were performed a t  a controlled rate of 

warnatp between 2' and 5OC per  minute. 

worked specimen released its stored energy and less power w a s  required 

t o  hest the test specimen at  the predeterolined r a t e  than i n  subsequent 

anneals. 

sequent anneals, AP, Over the  time of the  m e a l ,  the  t o t a l  energy stored 

After s t ra in-  

During the f i r s t  anneal the cold 

Integrating the power difference between the f i r s t  and sub- 
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was obtained. 

(f O.lO°C) was maintained between the specimen chamber and the  specimens 

t o  ensure tha t  no heat was conducted t o  or from the specimens which would 

a f f ec t  the stored energy determinations. 

It should be kept in mind that  n u l l  temperature difference 

Electrical WirinR 

Thermocouple arranaement. Three thermoccq~les were used, A l l  were 

made from No. 36B and S gauge chrome%-constantan w i r e  supplied by Thermo- 

Electric Company. 

the system led t o  the standard specimen. 

were marked on the record during the isochronal anneals; 

tures  were readily interpolated. 

the standard specimen t o  the test specimen. 

couple led from the standard specimen t o  the specimen chamber w a l l .  

block diagram o f  the arrangement i s  presented in Fig. 2. 

One thermocouple, which measured the temperature of 

Readings of the  temperature 

other tempera- 

A d i f f e ren t i a l  thermocouple led from 

A second d i f f e ren t i a l  t h e m -  

A 

The specimen-specimen d i f fe ren t ia l  thermocouple w a s  connected t o  a 

reversing switch and then t o  a Keithley Milli-Microvolt Amplifier (9149). 

The temperature difference, together with the test specimen power input, 

w a s  mmltored on the two pen recorder. 

was reversed often during the anneals t o  eliminate the e f fec t  of contact 

potentials.  

the reversed signals as seen on the recorder, 

The temperature difference signal 

Mull temperature difference was taken t o  be the average of 

Beater circui ts .  The specimen chamber heaters were mounted exter- 

nal ly  m the specimen chamber and controlled manually. 

of the variable resistor i n  the c i rcu i t ,  the  temperature difference 

between the  specimen Chamber and the standard specimen was held t o  less 

than * O.lO°C during the isochronal anneals. 

By judicious use 

The specimen chamber was  
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heavy walled copper t o  insure temperature uniformity. 

The spechen  heaters were connected t o  a foo t  long length of 140 

copper wire which led in to  #20 copper wire which was wrapped and epoxy 

cemented t o  the thermal grounding posts. From the  specimen chamber the 

wiree led i n t o  a c i r c u i t  which is i l l u s t r a t e d  in Fig. 2. The emf leads 

from the  test specimen heater ran i n t o  a precision voltage divider t o  

obtain a v o l t a g e  reading in the range of the potentiometer. 

unbalance s ignal  from the potentiometer was fed i n t o  the other input of 

the recorder, where f u l l  scale deflection w a s  l m i l l i v o l t .  

The small 

The voltage t o  the standard specimen was l e f t  unchanged during the 

experiaents, aml the  &est.apecimen heater was controlled by the var iable  

r e s i s to r  i n  the c i r c u i t  so t ha t  the apparent temperature difference 

between the two specimens was less than * l W 3  O C .  While the individual 

junctions are  not reproducible enough t o  be sure  t h a t  the actual"temperad 

t u r e  difference was t h i s  s m a l l ,  the temperature differences could be re- 

produced from one run t o  the next t o  t h i s  accuracy, 

reproducibil i ty which is crucial  t o  the experiment. 

the standard specimen w a s  measured by reading the voltage drop across the 

ten ohm standard res i s tor ,  

during the anneals. 

variations i n  the output from the power supply were based on t h i s  measure- 

ment. 

It is t h i s  type of 

The current through 

This voltage w a s  measured every ten degrees 

Any corrections t o  the voltage measurements due t o  

Corrections were of the  order of 10% of the  stored energy. 

Creep Experiment 

This pa r t  of the research used the same apparatus and specimens as 

the stored energy experiment. Using the s t r a i n  apparatus the specimen 

waa st rained 10% a t  l iquid nitrogen temperatures. With the  load still 



8 

on the specimen the systemwas warmed a t  the  rate of 3 t o  4 O C  per 

minute, 

deflections of the d i a l  gauges. 

The change i n  length of the test specimen was obtained from the 

Radiation Damage 

The radiation damage study was performed using ultrasonic apparatus 

and techniques which are essent ia l ly  ident ical  t o  those described by 

Love, et a16, and w i l l  not be discussed fur ther  here. 

w a s  a 10 megacycle x-cut quartz d i sc  d e  by Valpey Corporation and was 

bonded t o  the specimen with Nonaq stopcock grease. 

The transducer 

The one specimen used was approximately a cube one centimeter on 

an edge, cut from a 99.999% pure s ingle  c rys ta l  lead ingot obtained from 

Unimet Corporation. (See re f ,  6 f o r  semiquantitative analysis of another 

sample cut  from t h i s  tngot.) The crys ta l  was oriented so t ha t  the ul t ra-  

sonic pulses traveled along the  [ l l O ]  direction. 

faces were hand lapped f l a t  and pa ra l l e l  as required fo r  the ultrasonic 

measurements. 

The specimen's (110) 

The specimen chamber consisted of a simple frame i n  which the speci- 

men rested during the i r rad ia t ion  and anneals. 

between two Styrofoam forms i n  the frame. 

frame and specimen were kept i n  a dewar of l iquid nitrogen inside a 

brass water t i g h t  can. 

took place i n  a Co6* source which was  located 15 f e e t  under water. 

temperature was controlled during the anneals by ra is ing ot lowering 

the frame above the l iquid nitrogen level i n  the dewar. The temperature 

w a s  measured by means of a chromel-constantan thermocouple which w a s  

attached t o  the specimen. 

The specimen rested 

During the i r radiat ion the 

The can w a s  necessary because the i r radiat ion 

The 

The isothermal anneals were kept t o  within 
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f O.lO°C using this system. 

a t  the rate of 3-4OC per minute. 

Anisothermal anneals were performed typically 

111. ANALYSIS AND RESULTS 

The resu l t s  of the three experimental techniques used i n  this 

research w i l l  be presented i n  t h i s  part .  Only those conclusions which 

can be made without correlation with the other resu l t s  w i l l  be described 

here, the remainder being deferred u n t i l  P a r t  I V .  

Stored Energy of Cold Work 

The resu l t s  of the f i r s t  26OC above l iquid nitrogen temperature are 

not reported because it required approximately tha t  range of temperature 

to  a t t a i n  n u l l  temperature difference between the specimens and the 

specimen chamber. The voltage drop, V, across the heater i n  the test 

specimen was monitored continuously during the anneals. 

age drop across the hearer w a s  of the order of f i ve  vo l t s  and the volt-  

age difference between the f i r s t  anneal a f t e r  s t r a in  and subsequent 

anneals was twelve mil l ivol ts  a t  maximum, the  power difference between 

the anneals can be approximated by the  expression 

Since the volt-  

AP 2VAVIR - V2&R/R2 ( 1) 

Here R is the resistance of the rest specimen heater, and AV and 

AR r e fe r  t o  differences between the f i r s t  and subsequent anneals. The 

last term of Eq. 1 was ignored i n  a l l  calculations since i t  w a s  always 

less than 0.1% of the f i r s t  term. 

EsD Eq. 1 w a s  integrated over the length of t i m e  of the anneal, t s  , 
In  order t o  obtain the stored energy, 

Es = (2V/R) $iibVdt 
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In practice,  t h i s  integration was  carried out from the data  p lo ts  with 

the aid of a planimeter. 

In order t o  ver i fy  that  the observed changes i n  voltage w e r e  due t o  

stored energy release and not some extraneous effect ,  various experimental 

checks were performed, 

followed tha t  of a typical  stored energy determination except t ha t  the 

s t ra in ing  tube w a s  j u s t  brought i n t o  contact with the test specimen and 

no stress was applied. 

specimen heater during three subsequent anneals led t o  a stored energy 

uncertainity of f 6%. 

A dummy run w a s  performed where the procedure 

The var ia t ion i n  voltage drop across the test 

I n  order t o  minimize the problem of adsorption of gases on the  

surfaces of the specimens, the specimens and specimen chamber were out- 

gassed a t  an elevated temperature pr ior  t o  the compression. 

system w a s  kept evacuated u n t i l  the stored energy determination w a s  com- 

pleted l i t t l e  release of adsorbed gases .luring the anneals w a s  expected, 

The absence of any spurious peaks i n  the dummy run established the f a c t  

that  adsorption of gases was not a problem. 

Since the 

Another source of e r ror  was tha t  due t o  the e f fec t  of s t ra ining the 

samples. It appears that ,  due t o  the i n i t i a l  compression, a worse 

thermal contact w a s  created between the test specimen and its heater 

than existed pr ior  t o  compression. 

the thermal contact improved. Thereforep the temperature difference 

between heater and sample was  greater A d  more heat flowed through the 

leads from the test specimen heater t o  the specimen chamber during the 

f i r s t  anneal than i n  subsequent anneals. 

stored energy than are correct. 

In  the f i r s t  anneal a f t e r  s t ra ining 

This led t o  lower values of 

In fact ,  i f  the thermal resistance 
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between the specimen heater and the specimen chamber w a s  low enough 

apparent negative stored energies were obtained. 

This e f f ec t  was investigated by measuring the temperature difference 

between the specimen surface and the heater winding during a series of 

anneals by means of an additional thermocouple. 

three degree8 were found between the f i r s t  anneal and subsequent anneals 

Variations of up t o  

a f t e r  straining. 

men heater  and the specimen chamber the e r ror  i n  stored energy due t o  

t h i s  e f f ec t  was kept t o  less than * 6%. 

By increasing the thermal resistance between the speci- 

This change i n  thermal contact e f f ec t  may have caused er rors  i n  

other stored energy studies. 

similar t o  ours9 studied copper a f t e r  fa t igue and found apparent negative 

Welber and Webeler7, using 821 apparatus 

stored energy release. 

taking in to  account t h i s  thermal contact effect .  

It is possible tha t  those r e su l t s  suf fe r  from not 

The r e s u l t s  of expending s imilar  amounts of energy on different  

specimens led t o  similar stored energy curves with variations of up t o  

4% between a p a i r  of typical  runs. 

with the uncertaini t ies  mentioned above the  t o t a l  e r ror  i n  the stored 

Considering t h i s  variation together 

energy values is estimated t o  be 15%. 

The stored energy release is markedly affected by different  impurity 

levels i n  lead. 

from three different  puri ty  samples a l l  s t ra ined t o  similar amounts of 

Figure 3 i l l u s t r a t e s  typical  stored energy release curves 

energy expended. 

the energy released a t  lower temperatures. 

region near -20°C is associated with recrystall ization. 

peak i n  the -8OOC t o  -6OOC region is  associated with point defect 

As seen, the increase of the impurity level  increases 

The peak centered in the 

The smaller 
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migration. 

energy peak rises from -2OOC f n  99.9999% pure lead t o  - 1 2 O C  i n  the 99.9% 

pure lead t o  -5OC i n  the 99% pure lead. 

The maximum release rate in the recrystal l izat ion stored 

The r a t io s  of the t o t a l  amount of energy stored t o  the energy ex- 

pended in  compression obtained from a series of experiments on samples 

of di f fe ren t  pur i t ies  are presented i n  Fig. 4. 

tha t  the impurity level does not affect  the energy stored f o r  the same 

amount of energy expended per gram. As Fig. 3 indicates, however, im- 

purity does change the fract ion of the energy released i n  the various 

temperature ranges. 

The resu l t s  indicate 

Khotkevich, et a1 have studied the stored energy release i n  plas- 

t i c a l l y  deformed lead.3 They crushed 0.2 mm diameter, 50 mm lengths 

of lead (purity unstated) i n  a press at  l iquid nitrogen temperature. 

Their resu l t s  indicate a general agreement as t o  the high percentage of 

energy stored at  low expenditures, 

indicate considerably higher storage. 

ences are suf f ic ien t  t o  explain t h i s  discrepancy. 

At higher expenditures the i r  resu l t s  

It may be that  experimental differ-  

Discussion, The small peak near -7OOC w i l l  be associated with 

vacancy motion i n  par t  IV. Attempts t o  analyze the shape of t h i s  peak 

by the method of Nicholas8 or t o  observe a s h i f t  as a function of rate 

of change of temperature were unsuccessful. The large peak, associated 

with recrystal l izat ion,  i s  seen t o  m e  t o  higher temperatures as the 

impurity level is raised. This is a resu l t  of impeded grain boundary 

and dialocatioa motion i n  the  impure material. 

studied i n  d e t a i l  by Aust and R ~ t t e r . ~  

Such ef fec ts  have been 
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The large peroenfege of energy stored when small amounts of energy 

are expended is nol: i n  agreement with s tudies  of other face  centered 

cubic metals10. 

formed which are not  s t ab le  and sedentary at l iqu id  nitrogen temperature, 

It implies t h a t  f o r  small s t r a i n s  there  are few defects 

The increase of the f rac t ion  of the  t o t a l  energy released during 

recovery as impurit ies are added may be explained as follows: 

defects are thoughtto be formed during deformation primarily i n  l i n e s  

behirid moving jogs i n  dislocation linea.  

w i l l  be considerable and w i l l  he maximum i n  the pure material, where 

trzpping c a t e r s  are rare. 

defects  w i l l  have clustered and not release fur ther  energy u n t i l  recrys- 

t a l l i za t ion  has commenced, 

w i l l  be trapped a8 singles or  small groups and may move a t  lower tempera- 

tures.  Their motion may a l so  allow considerable dislocation climb and 

rearrangement. 

Point 

As puch the tendency t o  c lus t e r  

Thus, i n  the pure mterial, most of the point 

In the impure material. the point defects 

The decrease i n  the  percentage of energy stored with increasing 

expenditure i s  a normal r e su l t ,  explained by the f a c t  t h a t  when a large 

amount o f  energy is  spent there are more dis locat ion intersect ions and 

more point defects produced as w e l l  as an increase i n  the dislocation 

density. There are then both %ore point defects  with f t n i t e  mobility at  

77OK formed and a l so  a larger  probabili ty of dis locat ion interact ion and 

annihilation e 

Creep 

The r e su l t s  consist  of the change i n  length of the  specimen under- 

going a constant compressive stress a f t e r  an f n i t i a l  ten percent s t r a i n ,  



while the temperature is raised a t  the rate of 3-4OC per minute. In 

order t o  expose the regions of temperature where the s t r a i n  rate changes, 

graphs of the change i n  s t r a in ,  A&/&, during the previous ten degrees, 

w e r e  plotted versus temperature. 

investigated: 99.9999% pure lead and 99% lead -l% thallium. 

Two di f fe ren t  puri ty  lead samples were 

The data  

from the 99% lead are presented i n  Fig, 5 .  

increase in the s t r a i n  rate u n t i l  - U O ° C  is reached where a small peak 

These r e su l t s  exhibi t  l i t t l e  

occurs. L i t t l e  additional s t ruc ture  is observed u n t i l  -7OOC. The 

resufts  from 99.9999% pure lead lacked the -13OOC peak but  showed the 

higher temperature rise begintling about -80°C. 

Discussion. The difference in behaviour near -130OC of the  samples 

of d i f fe ren t  puri ty  a g a h  suggests a release of p d n t  defects from impur- 

i t y  traps. The released defects must be ones which can aid dislocation 

climb .chw&y giving rtse t o  the  temporary softening when they reach the  

dislocations. 

associated with other point defects migrating but is ultimately dominated 

The general rise at  higher temperatures may i n i t i a l l y  be 

by recrystal l izat ion.  

Radiation Damage 

Isochronal anneals. The technique used here t o  study the small 

amount of damage introduced by the gamma i r rad ia t ion  was ultrasonic 

attenuation. 

motion of dislocations i n  the ultrasonic stress f ie ld .  When point 

The picture  is one of attenuation primarily due t o  the 

defects migrate t o  the  dislocations t h e i r  motion is impeded and the 

attenuation is reduced. In  the present experiment the th i rd  echo was 

monitored continuously on the recorder during all anneals while the 

i n i t i a l  pulse was held fixed. Figure 6 i l l u s t r a t e s  the resu l t s  of such 



monitoring during the following operations: (1) the pre-irradiatlon 

cooling from room temperature t o  l iquid nitrogen temperature, (2) the 

pos t  i r rad ia t ion  annealing up to  +20°C, (3) and (4) a subsequent cool 

down-irradiation-warmup cycle (performed a f t e r  the transducer bond wa8 

changed), and ( 5 )  an unirradiated w a m p  t o  +2OoC. 

In  order t o  check tha t  the i r rad ia t ion  e f fec ts  observed weke asso- 

ciated with the sample and not with the transducer and bond, a simllar  

irradiation was performed with the sane transducer and bonding agent on 

a co;msncercial aluminum al loy sample. In  such a sample, l i t t le  e f f ec t  is 

expected due t o  migration of point defects created by the i r radiat ion 

because the impurities pin the dislocations i n  place throughout the 

process. No e f fec t  was found on the pulse height indicating tha t  the 

effect seen i n  lead is associated with the  damage done t o  the sample 

during the i r radiat ion.  

In Fig. 6 the regions of pulee height increase (corresponding t o  

attenuation decrease) are thought t o  be associated with the  arrival of 

point defects a t  the dislocations,  For convenience, we will r e fe r  t o  

the low temperature region -140°C t o  =-1lS0C as stage 111 and -9OOC t o  

-40°C as stage ZV. 

stages i n  copper w i l l  be discussed i n  section IV. 

The similar i ty  of these reglons t o  the corresponding 

Isothermal anneals. To obtain activation energies of the migrating 

defects in  stages 111 and IV the following model wag developed. 

model is based an the Granato-LUckell theory and a publication by Shawl2> 

et al. We assume tha t  the gamma rays have created a uniform dis t r ibut ion 

of isolated defects i n  the s ingle  c rys ta l  and that the c rys ta l  possesses 

The 
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a uniform db loca t ion  density. 

the dislocations is taken as d i rec t ly  proportional t o  the number of 

defects which disappear from the  bulk of the  crystal, 

are represented as perfectly absorbing c i rcu lar  cylinders of f b i t e  

small radius to and i n f h i t e  length. 

The number of pinning points created at 

The dislocations 

Following the  method outlined by D i e n e s  and Vineyardf3, the solution 

of the diffusion problem of point defects migrating t o  the dislocations 

2s e$mplAffed by dividing she crystal. Anta Imaginary cyl iaders  of radius 

q such t h a t  each cylinder contains one dislocation at  its center. 

Further, the surface of the cylinder at q is considered perfectly re- 

f l ec t ing  and r I 2  is taken equal t o  l/No (No is the dislocation density). 

The diffusion equation f o r  the t o t a l  number of defects per un i t  

leagth of the cylinder, a(t), then reduces t o  

dn(t)/dt  = -Kn(t) ( 3) 

where K = 211 NoDlln(rl/ro) and D is the diffusion coefficient. This then 

leads to Eq. (4) 

hfn(t) /n(O)]  - - t(2vN0Do%n(r~/ro) exp -Q/kT ( 4) 

The concentration of pinning points a t  the dislocation l ine,  %(t), 

$8 

cD(t) - Cf)(O) + R@(O) - n(t1-i ( 5 )  

&ere $(t) 5s the average linear density of pinniug points at the start 

of the  isothermal anneal. 

change in the number of defects in the cylinder t o  the  nuuiber of pinning 

points created a t  the dislocation l ine.  

R is the  proportionality constant re la t ing  the 
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We now assume tha t  the t o t a l  attenuation of the pulse is  due t o  the  

dislocation vibrat ional  loss. 

at the dislocation l i n e  is inversely proportional t o  the  average loop 

length, L, of t he  dislocation lines. 

Grmko and Luckell showed t h a t  the attenuation is given by the  relation 

The l inea r  concentration of pinning points 

A t  frequencies w e l l  below resonance 

a = B L 4 d  ( 6 )  

where o 28 t he  angular frequency of the  pulses. B is a proportionality 

constant depending upon the veloci ty  of ewnd i n  the material, the dis- 

location density, and other parameters. Therefore, for the present fixed 

frequency and dislocation density conditione 

where A is a proportionali ty constant, 

times, n for the  diffusing species w i l l  go t o  zero, equations ( 5 )  and (7) 

Realizing that ,  f o r  very long 

can be combined t o  yield the r a t i o  n ( t ) / n ( O ) .  

Combining Eq. 8 with  Eq. 4 we obtain 

Rn €(a) = -c t / T  (9)  

where 1/? * 2nNoDoRn(tl/ro) exp - Q/kT 
Experimental values of h f ( a )  plotted against t h e  should then be l inear  

with a slope of -l /~.  

experhenta l ly  a plo t  of Rn l / . r  against 1/T should be l i nea r  with a 

When many values of T and T have been obtained 

slope of -Q/k. 

In  the above manner act ivat ion energies of the mobile defects have 

been obtained from isothermal anneals i n  the stage I11 and stage I V  
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temperature regions. From these da ta  p lo t s  of Rn f(u) versus tide were 

made. These are i l l u s t r a t e d  i n  Figs. 7 and 8. The p lo t s  of Rn I/T are 

shown i n  Figs. 9 and 10. 

slopes are: 

The act ivat ion energies obtained from the  

i n  s tage 1x1, 0.155 * 0.010 eV, in s tage  IV, 0.31 * 0.04 eV. 

Discussion. I n  s tage  I11 the Rnf(a) versua t p lo t s  show a marked 

tendency t o  become nm-linear as time progresses. 

may be a t t r ibu ted  t o  e r ro r s  i n  the  value of a(=) used. 

auneal is not  allowed t o  continue f o r  a su f f i c i en t ly  long time, the a(-) 

Some of this tendency 

If the  isothermal 

W&ue obtained may be smaller than the correct  value. 

a f f e c t  f (a )  values near the s tar t  of the anneal as much as i t  af fec ts  

later values. 

p lo t s  have been used i n  arr iving a t  the act ivat ion energy for stage 111. 

Allowing a reasonable uncertainity i n  a(-) doea n o t  seem to  account 

f o r  the s i z e  of the deviation of the Rn f(a) curve from l i n e a r i t y  and some 

other explanation must be sought. 

t h i s  deviation is a r e s u l t  of a competing process whereby pinning points 

are annihilated. One such possible process would be a diffusion of the 

pinning points along the dislocations u n t i l  they recombine with others, 

thus lowering the  e f f ec t ive  number. 

t h i s  picture,  however. 

This does not 

Therefore, the  i n i t i a l  slope of the  Rn f(a) versus time 

It would seem qui te  reasonable t h a t  

More research is needed t o  es tab l i sh  

I n  s tage I V  the  Rn f(a) versus t i m e  p lo ts  are l inea r  indicat ing 

migration of defecte t o  the dislocations t o  form s t ab le  pinning points. 

Following an isothermal anneal in stage IV the temperature can be raised 

to -40°C before fur ther  change i n  attenuation occurs. 

the  pulse height i n  the temperature region abuve - 4 O O C  is continuous as 

the  temperature is fur ther  raised. 

The decrease of 

This is a t t r ibu ted  t o  the disappear- 
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ance of the pinning points which have been created by point defects, by 

the recrystal l izat ion mechanism. No isothermal studies have as ye t  been 

made of t h i s  recrys ta l l iza t ion  region, For convenience, the region from 

-4OOC t o  4=3OoC w i l l  be referred t o  as stage V, 

TV. DISCUSSION 

Ident i f icat ion of the Migrating Defects 

It is believed that essent ia l ly  a l l  of the defects created by the 

gamma i r rad ia t ion  of lead are simple Preukel defects. In addition the 

concentration t o  be expected from the present i r rad ia t ion  is very s m a l l .  

Under these conditions the only recovery stages observed w i l l  be those 

associated with the migration of intersti t ials and vacancies and with 

recrystal l izat ion,  However, the f r e e  defects can be trapped a t  impurities 

with the resu l t  that  there w i l l  be a series of recovery stages depending 

OR the d i f fe ren t  types and number of impurity traps,  

has been presented by Hasiguti14, Martin15, Seeger16, and S o ~ i t l ~ ~  t o  

explain stages I1 and I11 in copper. 

This interpretation 

The Ampur’ity studies in the stared 

energy and creep experiments indicate a similar e f f ec t  i n  lead. I n  

d i r ec t  analogy with the  picture  developed by these authors for  copper we 

suggest t ha t  stage 111 i n  lead is associated with the release of inter-  

s t i t d a l s  from impurity traps, stage IV I s  the migration of f r e e  vacancies, 

and stage V is recrystall ization. 

Consistency o€ the  Results with the Defect Identiflcation 

Stage I11 

According t o  the data  on copper, stage XI1 exhibits a second order 

nature during the r e s i e t iv i ty  recovery. Our radiation damage resu l t s  
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indicate  tha t  the stage I11 defect migration as observed by the attenua- 

t ion technique i n  lead is eesentially f i r s t  order, 

dict ion present i f  one rea l izes  tha t  i n  s tage I11 the  interstitial8 

migrate t o  vacancies and dislocation sinks, 

is sens i t ive  t o  annihilation at both types of sinks, while the attenua- 

tion technique i s  sens i t ive  only t o  the defect migration t o  the  dislo- 

cations. Because of the high levels of damage required f o r  the resis- 

t i v i t y  experiments, recombination with the  associated second order 

kinetic8 dominates. In the present attenuation experiment, the  migra- 

t ion  of the l n t e r a r i t i a l s  t o  the dislocations should dominate mer re- 

combination because the number of wacaucy.elte8 epai lahb f o r  recaw 

There is no contra- 

The r e s i s t i v i t y  recovery 

Bination is estimettrad to be at  most lom4 of the number of dislocation 

sites available. This i s  based on an estimate of the damage, calculated 

using the theory of Sei tz  and Koehler18, 

placing a lead atom, based on the  damage estimate, i s  less than 21 eV. 

The threshold energy for  dis- 

Both the stored energy and creep ertperioaents indicate an enhance- 

ment of annealing i n  the v i c in i ty  of s tage 1x1 as impurities are added. 

This might be explained e i t h e r  by the hpurity-trapped defect hypo- 

thes i s  or by cclnsidering tha t  higher prestrain dislocation dens i t ies  mag 

have been present in t he  impure material yielding more point defects  upon 

deformatim. 

in the  present experiments but there  appear t o  be two pieces of indirect  

evidence which speak against  s ignif icant  differences in dislocation den- 

s i t y .  F i r s t ,  the  t o t a l  energy stored upon deformation is independent of 

impurity %we1 indicating tha t  the deformation processes are similar i n  

the pura and doped materials. 

No dislocation density measurements have as yet  been made 

Second, the s tage IV stored energy peak 
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is not s i w i f i c a n t l y  increased as the impurity level is increased but 

ra ther  fades in to  the general recovery background indicating again tha t  

&e t o t a l  number of point defects formed is perhaps not very d i f fe ren t  

while impurity trapping w i l l  be. 

That stage Iff involves i n t e r s t i t i a l s  ra ther  than some other kind 

of defect must rest for the present upon the analogy of lead with copper 

and the calculations and experiments on copper which support t h i s  model. 

I n  addition it should be pointed out tha t  the  residual impurities i n  the 

radiation damaged specimen are probably not predominantly thallium while  

stage I11 occurs in t h e  same temperature region f o r  the thallium doped 

and the pure specimens used here. Thus the  proposed model requires a 

very weak dependence of interstiti-al-impurity binding energy upon impurity 

species. 

Boesono2 has studied the r e s i s t i v i t y  recovery of lead which had been 

cold-rolled a t  l iquid nitrogen temperature. 

i n  the -13OOC region as being due t o  vacancy migration and obtained art 

act ivat ion energy of migration of 0.48 f 0.05 eV €or t h a t  region. 

of the briefness of h i s  paper and the absence of de t a i l ,  i t  is impossible 

H e  interpreted the recavery 

Because 

t o  f u l l y  understand the difference i n  resul ts .  We believe tha t  the re- 

covery taking place in the  -130°C temperature region is associated with 

the present stage I11 and t h a t  h i s  vacancy recovery is hidden in  the  

recrystal l izat ion region. This takes place at  a very low temperature in 

the Boeeono study due t o  the  large amount of s t r a i n  applied t o  the speci- 

mens during the cold ro l l i ng  (70%). 

of the recovery in the  -13OOC region with increasing impurity levels. 

Boesono's data show an enhancement 
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This is i n  agreement with our picture of i n t e r s t i t i a l s  being releaeed 

from impurity t raps  i n  t h i s  stage. 

s t ra ined lead a t  l iqu id  helium temperatures studied by Schenckl indicates 

f a t l y  tha t  there are separate stages 111, IV, and 0 in approximate 

agreement with the stages seen i n  t h i s  research. 

The res%st iv i ty  recovery of tensi ly  

Starzle IV 

In the temperature range -9OOC t o  -4OOC'both the  stared energy and 

radiation damage ezsperiments indicate  an anneal taking place. 

energy shows no increase in stage IV as impurity is added ad, fn fac t ,  

at  the 1% thallium level ,  the peak has faded completely i n t o  the general 

recovery background. Neither the creep experiments i l l u s t r a t ed  tn Fig. 5 

nor those carried out on the  high puri ty  material show a stage XV peak 

which can be c lear ly  separated from the onset of recrystal l izat ion.  

view of the nature of those roeasuremeats this is not unreasonable. 

The stored 

In 

The energy of self-diffusion i n  lead has been established by 

I U a ~ h t r i e b ~ ~  t o  be 1.05 * 0.01 eV. 

the diffusion mechanism is tha t  of vacancies by Mirkendal120. 

pected tha t  the same is a lso  true for lead. Then the  8um of the energy 

of ndgration found i n  stage IV and the formation energy of a vacancy i n  

lead should yield the a c h t r i e b  resul t .  

a vacancy in  lead is found to  be 0.74 f 0.05 eV, 

the  r e s u l t  of Van Duyn who found that  this energy must be greater than 

0.4 eV.21 

It ha8 been established i n  copper tha t  

It is ex- 

Thus the  energy of formation of 

This is consistent with 

Stajze V 

During the  f i r s t  anneal after i r radiat ion,  the pulse height i n  t h i s  

stage decreases continuously t o  the  pre-irradiation value. This is 
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associated wfth the thermal release of defects from dislocations, a 

process which is often thought t o  give rise t o  recrystal l izat ion and 

here allows release of pinning points from the  dislocations4 

creep and stored energy measurements are ent i re ly  consistent with recrys- 

t a l l i za t ion  i n  t h i s  region around -2OOC. 

Both the 

Summary and Conchsions 

The r e su l t s  of the d i f fe ren t  techniques used i n  t h i s  study of lead 

A method of obtaining acti- have been put i n t o  a self-consistent form. 

vation energies from isothermal anneal data  using the ul t rasonic  attenua- 

t ion technique a f t e r  i r rad ia t ion  has been presented. 

made i n  arr iving at  the act ivat ion energies a re  based on the Granato- 

Ltfcke theory which has not been ver i f ied  i n  lead a t  the frequencies used 

i n  t h i s  research. 

analysis is correct i s  t h a t  the  data  f i t s  very w e l l  i n to  the  activation 

energy analysis. 

The main assumptions 

The principal  j u s t i f i ca t ion  f o r  concluding tha t  the 

The ident i f ica t ion  of the migrating defects is tentat ive and is 

guided by the much more extensive work on copper. 

t en t  ident i f icat ion is tha t  of i n t e r s t i t i a l s  migrating from impurity 

t raps  i n  the - 1 4 O O C  t o  -110OC region, f r ee  vacancies migrating i n  the 

-90°C t o  -4OOC region, and recrys ta l l iza t ion  occurring, fo r  the s t r a ins  

and pu r i t i e s  studied here, above -60'C. Based upon t h i s  ident i f icat ion 

the binding energy of i n t e r s t i t i a l s  t o  impurities is 0.155 * 0.005 eV, 

The most self-consis- 

the energy of migration of vacancies is 0.31 * 0.04 eV,  and, using 

Nachtrieb's oelf-diffusion datal9,  the energy of formation of a vacancy 

is found lo be 0.74 * 0.05 e V 4  Oeae might expect the i n t e r s t i t i a l  
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impurity binding energy t o  be strongly dependent upon the impurity type 

but, within the liu&tations of the  present experfmatt, t h i s  does not 

seem to  be the case. 

A surprising r e s u l t  of t h i s  research is the  large fract ion of the 

expended energy which is stored upon small deformations a t  l iquid 

nitrogen temperature. As much as 80% of the energy expended is stored i n  

lead while in copper only 29% storage is observed f u r  the same anrount of 

energy expended per gram atomic weightlO. 

ent i n i t i a l  dislocation configurations i n  the  two materials or be caused 

by a more fundamental difference. 

This might r e su l t  from differ-  

Several questions remain from t h i s  research and are now being 

pursued. 

theory a t  the  very literal level employed here, 

nature the ident i f ica t ion  of the processes leading t o  the pulse height 

drops in Fig. 6 abwe s tage I11 and IV requires fur ther  work. It doe8 

appear, however, t h a t  the ul t rasonic  technique can provide quant i ta t ive 

information concerning point defect annealing. 

Foremost is the general appl icabi l i ty  of the Granato-Wcke 

Of a more detai led 
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FIGURE CAPTIWS 

Fig. 1 - 

Fig. 2 - 

Fig. 3 - 

Fig.  4 - 

Fig. 5 - 

Fig. 6 - 

Fig. 7 - 
Fig. 8 - 
Fig. 9 - 

Section diagram of the s t ra in  apparatus and specimen chamber 

used i n  the stored energy and creep studfes. 

Schematic diagram of the thermocouple and electrical arrange- 

ment in  the stored energy and creep studies (the specimen 

chamber's external heater c i r c u i t  is omitted) 

The power difference between the later anneals and the f i r s t  

anneal a f t e r  s t ra in .  

Percentage of energy stored versus energy expended fo r  several 

pur i t ies  of lead. 

Three creep experiments performed on d i f fe ren t  99X lead-1% 

thallium samples. 

The change of pulse height of the  third echo during temperature 

cycles. 

and the lower curves were unirradiated comparison runs. 

Rn f (a )  versus t i m e  during typical stage 1x1 anneals. 

fin f(a) versus time during typical  stage I V  anneals. 

Rn l / r  versus 1/T based upon Fig. 7 and additional data, 

(stage 111). 

The two upper curves were taken following i r rad la t ion  

Fig. 10 - Rn l / . r  verws 1/T based upon Fig. 8 and additional data, 

(stage IV) , 
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